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Abstract

The most likely failure point (MLFP) method, developed within the field of structural reliability
analysis (where it is known as the FORM/SORM method) is a technique for estimating the risk
(probability) that a calculated quantityQ exceeds a set limitQlim when some or all of the inputs to
the calculation are uncertain.

It can be used as an efficient stand-alone method for this type of risk calculation. However, for
application within the field of toxic hazards, it is proposed as a means for performing sensitivity
analyses, possibly in parallel with a risk calculation carried out by conventional methods.

The basis of the method is outlined and its use is demonstrated by means of an example calculation
of the risk arising from an installation containing chlorine. The calculation uses, as a consequence
model, commercial software for the prediction of dense gas transport. The risk estimate is shown to
be acceptably close to that obtained by the Monte Carlo method. The use of a proposed screening
procedure utilising the sensitivity formulas that the method provides, in order to identify the most
significant uncertainties, is demonstrated.

The identification of a single set of input values containing sufficient information to summarise
(at least approximately) the entire risk analysis is considered to be an important feature of the
method and is proposed as the basis of a means for assessing the validity of the consequence model.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper describes an efficient method for performing sensitivity analyses for cer-
tain types of risk calculation, i.e. those based on a (usually complex) deterministic model
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Nomenclature

c chlorine release rate (kg s−1)
C chlorine concentration (ppm)
d downwind distance (m)
D toxic dose (ppm2 min)
Dd dangerous toxic dose
f frequency distribution
fD fraction of deaths arising from toxic dose
fT frequency of a toxic release
F subscript denoting failure region
i index for uncertain variable;i = 1 . . . N
Ii importance of uncertain variablei
Mg inventory of tank (kg)
N number of uncertain input variables to consequence model
p probability density
P probability
Pf1 first-order estimate of failure probability
Pij joint probability assigned to celli, j in quadrature method
PX cumulative probability distribution applying to variableX
P1 first-order estimate of probability integral over region beyond failure surface,

relative to best-estimate point
Q quantity predicted by consequence model
Qlim limit for acceptable values ofQ
R risk
Rc conditional risk
Rt risk per unit time
S spread of toxicity tolerance
T mean toxicity tolerance
u value of standard normal variable
uim value of ui at the most likely failure point
v wind speed (m s−1)
V toxic dose variable,V = ln (D)
x value of input quantity to consequence model
z0 ground roughness length (m)

Greek letters
β distance (number of standard deviations) from best-estimate point to most

likely failure point
δ diameter of leak hole (mm)
λi parameter in probability distribution assigned to input variablei
µ mean of distribution
σ standard deviation of distribution
τm duration of release (min)
φ standard normal density distribution
Φ cumulative standard normal distribution
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which calculates the consequence of a hazardous event. The concept of risk in such a
case arises because of the requirement that the consequence (however quantified) should
not exceed a certain acceptable limit, given that the values of the inputs to the model are
uncertain.

As an example, consider the assessment of risk arising from the release of a toxic material
from a storage site. Deterministic models exist which can predict downwind concentration
arising from such a release. However, neither the release characteristics nor the atmospheric
conditions at the time can be predicted, and the model will often require the input of other
data whose values may be subject to some uncertainty. It is common practice to represent
the former group of these uncertain quantities by probability distributions and to assign
best-estimate values to the latter.

The problem then facing anyone performing this type of analysis is that of demonstrating
that the result is not sensitive to uncertainties in the input. This can be a particular problem
if the calculation contains a significant number of input parameters, all of which can be
considered uncertain to an extent and whose exact role within the calculation is not always
understood in detail. It is normal to perform a standard sensitivity study, whereby various
input parameters are altered and the problem re-run. However, this is often unsatisfactory
and can be a laborious process for a risk analysis, requiring that the full analysis be repeated
a number of times.

This paper describes a method which produces not only an estimate of risk, but also, as
a by product, the sensitivities of the risk to all the inputs, including the parameters of the
probability distributions assigned to them. This method has been used routinely in the field
of structural reliability for the past two decades or so, where it is used to predict the risk of
structural collapse. It goes by the name of the FORM/SORM method, but is referred to here
by the more descriptive name of the most likely failure point (MLFP) method, for reasons
which will become apparent.

Despite its strong association with structural reliability, the MLFP method is quite general
in nature and can be used for any application where it is necessary to estimate the probability
P that some quantityQ (calculated using uncertain data) exceeds a set limitQlim . The method
is described in detail in [1–3] and more recent lists of references can be found in [4,5].

The following therefore describes:

• an example of a simple risk calculation for chlorine release,
• the basis of the MLFP method,
• how the MLFP method can be used in a real case,
• the interpretation of results from the example case described above.

2. Example of a toxic risk calculation

Fig. 1 shows a fictitious but characteristic plot of predicted toxic doseD (at a selected
downwind location) as a function of chlorine release ratec and wind speedv, with all
other quantities input to the consequence model assumed to be fixed. The predictions are
represented by contours of constantD, with one contour being of particular importance
since it represents the value of the ‘dangerous dose’Dd. Doses belowDd are considered to
be acceptable (‘pass’); those aboveDd unacceptable (‘fail’).
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Fig. 1. Contour plot of notional toxic dose calculation, showing predicted doseD as a function of chlorine release
ratec and wind speedv. Dd represents the ‘dangerous dose’.

The values of the other contours are represented as multiples or fractions ofDd. The
region below and to the right of theDd contour represents all those combinations ofv and
c which cause the dangerous dose to be exceeded, and is termed the failure region. The
region above and to the left therefore represents the pass region and the lineD = Dd,
which is the boundary between the two, is called the failure surface. Though illustrated
here with only two axes, the approach and terminology can be applied to any number of
variables.

Assume now that a very simple quantitative risk assessment is being carried out with
this consequence model. The wind speed and the chlorine release rate at the time of any
postulated release are, of course, unknown and have to be represented by frequency or
probability distributions. If the riskR is defined as the probability that someone located
downwind receives a doseD > Dd, then, with reference to Fig. 1, this can be visualised as
the probability that the combination ofc andv will lie somewhere in the fail region when
the release occurs. In other words, iff (c)dc is the frequency (probability per unit time) of
a release of rate betweenc andc + dc, andp(v)dv is the probability that the wind speed
lies betweenv andv + dv, then the riskRt (per unit time) is given by

Rt =
∫
F

f (c)p(v)dv dc (1)
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where theF indicates that the integration is carried out over the failure region—below and
to the right of theD = Dd contour. Iff (c) is defined as:

f (c) = fTp(c) (2)

wherefT is the frequency (per unit time) of a release of any size;p(c) probability; given
that a release has occurred, that the rate is betweenc andc + dc then:

Rt = fT

∫
F

p(c)p(v)dv dc = fTRc (3)

where

Rc =
∫
F

p(c)p(v)dv dc (4)

is the conditional risk (i.e. given that a release actually occurs) predicted by the calculation. In
what follows, the term ‘risk’ always refers to this conditional riskRc, unless stated otherwise.

Calculation ofRc therefore requires evaluation of integrals of the type given in Eq. (4).
Two conventional methods for performing this integration: the quadrature method and the
Monte Carlo method, are contrasted with the MLFP method in the next section.

3. Comparison of risk assessment methods

The MLFP method, in common with other methods for quantitative risk assessment,
starts with the assignment of probability distributions to any quantities which are uncertain,
either because they vary with time (atmospheric variables or toxic inventory) or are otherwise
inherently unpredictable (e.g. release rate). In addition, it is desirable, though not always
feasible (see below) to include probability distributions for other model input parameters
(e.g. ground roughness length), reflecting the user’s uncertainty as to the most appropriate
value to use.

In terms of the simple example introduced above, both the release rate and the wind
speed require representation by probability distributions, whereas the other input quantities
are assumed (for now) to be fixed. The following contrasts the MLFP method with two
conventional risk calculation methods: quadrature and Monte Carlo.

3.1. The quadrature method

In the quadrature method, the (c, v) plane is subdivided into regions or cells defined by
suitable intervals over the normal ranges of the variables. Fig. 2a gives a simple example
Let cell (i, j) be the cell formed by the intersection of theith interval on thec-axis and the
jth interval on thev axis, wherei runs from 1 toi andj from 1 to J so that there areI, J
cells altogether. Each cell is assigned a probabilityPij that the actual values ofc andv will
simultaneously fall within it, where the probabilityPij are seen to sum to 1.0.

The method proceeds as follows:
For every cell (i, j), a representative pair of values(c̄i , v̄j ) is selected (usually at the centre

of the cell) and a dose calculationD(c̄i, v̄j ) is performed. IfD > Dd (a ‘fail’), the value of
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Fig. 2. Illustration of (a) quadrature and (b) Monte Carlo methods, for calculation of risk.

Pij is added to an accumulator. When all the cells have been covered, the sum ofPij over
all the fail cells is the estimate of the riskRc.

The quadrature method is straightforward and robust and can cope with any kind of
probability distributions. Its disadvantages are that the subdivision of the probability dis-
tributions usually has to be done ‘by hand’, that the method’s accuracy depends upon the
size of the cells, and that only a limited number of uncertain variables can be treated in this
way. An extra variable implies an extra dimension: the product ofI, J cells which have to
be visited in the above example becomesIJK cells if another variable is added, so that there
is a severe penalty for adding other variables.

3.2. The Monte Carlo method

The Monte Carlo method is illustrated in Fig. 2b. Values ofc andv are generated randomly
in pairs from their probability distributions and, for each pair (ck, vk), the doseD(ck, vk) is
calculated. The number of times thatD exceedsDd is counted and, when a sufficient number
of fails has occurred, this value is divided by the total number of evaluations to giveRc.
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The Monte Carlo method is reliable and a useful technique for bench-marking the other
methods. Its well-known disadvantage is that, if the risk is fairly small, a very large num-
ber of evaluations may be required to give a converged estimate ofRc. It may be seen
that the addition of further uncertain variables is quite straightforward in the Monte Carlo
method, requiring only the generation of an extra random value per consequence model
calculation.

In neither of the above methods it is easy to perform an estimate of the sensitivity of the
predicted risk to the parameters assumed for each of the probability distributions. In the
MLFP method however, this is straightforward, as will now be described.

3.3. The MLFP method

3.3.1. Estimating Rc
The MLFP method works on a different principle from those techniques described above.

Referring to Fig. 2b, assume that the medians of the distributions are located at pointO,
which in this example lies in the pass region.O is termed here the best-estimate point
(BEP). The reason for the choice of median, rather than mean, will become evident in
what follows. It is reasonably clear that the further the pointO lies from the contour
D = Dd, the smaller the probability thatD will exceedDd. The principle of the MLFP
method is first, to define a standardised coordinate systems in which this distance can
be expressed, then to calculate the distance (by finding the point of closest approach of
the contour toO) and then finally to estimateRc by performing an analytic integration
over a region which approximates the failure region. This is in contrast to the conven-
tional methods, which produce an approximate numerical integral over the true failure
region.

The transformation to the standard coordinate system is achieved as follows. Assume that
an input quantityx to the consequence model is uncertain. This uncertainty is represented
by a continuous probability density distributionpx(x) or, alternatively, by the cumulative
probability distribution (the integral ofpx(x)) Px(x). The value ofx is converted to the value
of an alternative variableux by means of solving the equation:

Φ(ux) = Px(x) (5)

where

Φ(u) = 0.5

(
1 + erf

(
u√
2

))
(6)

is the cumulative standard normal distribution; i.e. the cumulative distribution corresponding
to the normal (i.e. Gaussian) density distributionφ for a variable of mean 0.0 and standard
deviation 1.0, i.e.

φ(u) = exp(−u2/2)√
2π

(7)

Each variableux thereby has a standard normal probability distribution and is referred to
as the standard normal variable corresponding tox.
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The best-estimate values for the uncertain variables are taken to be those defined by
the medians of the probability distributions. For the example given above, this is the point
where:

Pc(c) = 0.5 Pv(v) = 0.5 (8)

Assume that this point (the best-estimate point, or BEP) lies somewhere in the pass region.
From (6) and (8), the point corresponds to:

uc = 0 uv = 0 (9)

i.e. to the origin of the standard normal co-ordinate system.
The relationship between the best-estimate point and the failure surface in the new

co-ordinate system is illustrated in Fig. 3. Since each of the transformed variables now has
the same (standard normal) probability distribution, the combined distribution is a function

Fig. 3. Dose contour plot in standard normal co-ordinates (schematic). Location of best-estimate (median) point
(BEP) and most likely failure point (MLFP).
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only of distance from the BEP and the circles shown in the figure also represent contours
of constant probability density. The point of closest approach therefore also possesses the
maximum probability density (in the transformed system), and is therefore known as the
most likely failure point, or MLFP.

If the distance (essentially the combined number of standard deviations) from the BEP
to the MLFP is denoted byβ, then the integral of the probability density over the region
beyond the failure surface (relative to the position of the BEP) can be estimated to first-order
by the quantityP1, where

P1 = Φ(−β) (10)

which applies to any number of uncertain variables. Therefore, the first-order failure prob-
ability Pf1 is given by

Pf1 = P1 if the BEP lies in the pass region, (11a)

and

Pf1 = 1 − P1 if the BEP lies in the fail region (11b)

Pf1 is the first-order reliability method, or FORM, approximation toRc, and assumes that
the failure surface can be approximated by a straight line (or flat plane, or hyperplane)
tangent to the actual failure surface at the MLFP. A second-order reliability method (SORM)
approximation, which uses the curvature(s) of the failure surface to obtain an improved
approximation toRc, can be obtained (see [1–5]). However, the method is proposed here
not specifically to calculate an accurate estimate ofRc; it may even be that the full risk
analysis is actually performed using one of the conventional methods described above, but
to identify the quantities (if any) to whichRc is particularly sensitive. For this purpose, the
first-order estimate is sufficient, as described below.

The process of finding the MLFP is an example of aconstrained minimisation technique
[6]. This procedure is not trivial and requires the use of specialised software. Some practical
advice to this end is given in Appendix A.

3.3.2. Sensitivity analysis
Assume the general case in which there areN uncertain input variablesxi ; i = 1 . . . N

to the consequence model and that the quantity calculated by the consequence model is
represented in general by the symbolQ (the ‘quantity of interest’, replacing doseD in the
example). Assume also that the location of the MLFP has been found and that its co-ordinates
in the standard normal system areuim; i = 1 . . . N , the subscriptm denoting the MLFP
values. Suppose that we want to estimate how sensitiveRc is to one of the parameters of
the probability distribution assigned to variablei. UsingPf1 as a reasonable estimate ofRc,
it is straightforward to derive the rate of change ofPf1 with respect to this parameter (call
it λi) as

dPf1

dλi
= ∓

(
φ(β)uim

φ(uim)β

)
dPxi

dλi

∣∣∣∣
MLFP

(12)
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where the sign depends upon whether (11a) or (11b) applies. SincePxi is usually one of
the standard forms of distribution, the value of dPxi /dλi can be readily derived for the type
of distribution used for variablei.

However, it is usually the case (see Section 5) that the sensitivities vary by orders of
magnitude from variable to variable, so now assume that we wish to take a more pragmatic
approach and require instead only a rough estimate of the sensitivity, so that unimportant
variables can be identified with the minimum of effort. The following describes the basis
of a screening procedure which identifies the variables to which the risk estimate is clearly
insensitive, allowing the user to apply (if required) more accurate methods at subsequent
steps in the process.

For a normal distribution with parametersσ i (standard deviation) and�i (mean), the
form of (12) is particularly simple.

dPf1

dσi
= ±φ(β)u2

im

βσi
(13a)

dPf1

dµi
= ±φ(β)uim

βσi
(13b)

For each uncertain variable, let

Ii =
(
uim

β

)2

(14)

Ii is termed here the ‘importance’ of the uncertainty in variablei to the risk calculation, for
reasons which will become apparent below. From Pythagoras’s theorem it is obvious (see
Fig. 3), that∑

Ii = 1 (15)

Now, assume that we wish to estimate the sensitivity ofRc to the uncertainty in each variable,
as expressed by its standard deviation. For a normal distribution, from (13a) and (14)

dPf1

dσi
= ±βφ(β)Ii

σi
(16)

In addition, the change in calculated risk arising from the replacement of a normally dis-
tributed variable by its median (and hence, mean) value can be estimated as [7]

"Pf1 ≈ ∓βφ(β)Ii

2
(17)

Although (16) and (17) apply strictly only to a normal distribution, they are accurate
enough (say, within a factor of 2 or so) for any symmetric distribution to help determine
whether the sensitivity is likely to be of significance. The following therefore describes the
proposed screening procedure. This procedure is seen in operation in Section 5.

Step 1. Inspect the values ofIi for each uncertain variable:

• If Ii ≤ 5×10−3, the uncertainty in the input quantity is of no significance. The uncertain
variable may be replaced by a best-estimate value.
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• If 5 × 10−3 ≤ Ii ≤ 5 × 10−2, the uncertainty may be of significance. The sensitivity of
the risk estimate may be checked by an appropriate sensitivity formula (Step 2).

• If Ii ≥ 5 × 10−2, the uncertainty is probably having a significant influence on the
calculated risk. The sensitivity of the risk estimate should be checked by an appropriate
sensitivity formula (Step 2).

Step 2. Use the appropriate formula ((17), or (12) if required) to determine the sensitivity
of the calculated risk to the uncertainty in the distribution parameter. If"Pf1 is significant
compared withPf1, go to Step 3.

Step 3. Alter the parameter and re-run the MLFP calculation (using the original MLFP as
a starting guess for the iteration). If"Pf1 is significant compared toPf1, go to Step 4.

Step 4. Review the derivation of the probability distribution for the variables which reach
Step 4. Re-run the risk calculation as necessary.

It may be noted that the risk estimates (10) and (11), the importances (14) and the
sensitivity formula (17) require, for their evaluation, only the valuesuim; i = 1 . . . N . In
other words, the co-ordinates of one single point, the most likely failure point, contain
sufficient information to characterise (at least approximately) the full risk assessment and
therefore, provide a compact and standardised format for expressing the result.

4. Example case

The following example illustrates the use of the MLFP method for a risk calculation for
an installation containing chlorine. Although something of an idealisation, the calculation
contains many of the elements of a conventional risk analysis.

The case assumes the presence of a single 20 t storage tank and the MLFP method is used
to calculate the conditional riskRc at a sequence of downwind distancesd ranging from
200 m to 20 km, based on an assumed distribution of leak hole size. In order to broaden the
scope of the calculation, the quantity of interest is selected now to be not the toxic doseD
but the fraction of deathsfD resulting fromD. The risk is calculated as the (conditional)
probability thatf D > 0.005.

The physical model employed is the commercially available dense gas transport software
GASTAR, Version 3 [8]. GASTAR uses an integral, or ‘box’ model to predict the transport
of a dense gas plume, averaged over sections of the plume.

The following describes the probability (i.e. frequency or uncertainty) distributions as-
signed to a selection of the input quantities of the model. These are summarised in Table 1.
For the purposes of this example case, all the distributions are assumed to be independent
of one another (see Section 4.2) and the remaining input data are assumed to have fixed
values.

It should be emphasised that the purpose of the calculation is to produce the sensitivity
information which will allow the user to make an informed decision as to which distributions
need to be defined more precisely and which can either be left as rough estimates or replaced
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by fixed values. It is therefore not required, at this stage in the process, that the user be
particularly accurate in selecting the probability distributions, other than that these should
be a reasonable representation of either the expected frequency distributions or of the spread
inherent in the uncertain quantities.

It should also be noted (Section 3.3.1) that the MLFP method requires the use of contin-
uous distributions. However, a continuous distribution is usually a more realistic represen-
tation of the true state of affairs than a discrete distribution.

4.1. Source data

4.1.1. Chlorine inventory and release rate
The case assumes that the installation contains a single tank, whose inventoryMg at the

time of the release may be anywhere between 0 and 20 t of chlorine; i.e.Mg is represented
by a uniform probability between 0 and 2× 104 kg. The release is assumed to occur via a
hole in the tank or its associated pipework. The probability distribution of hole diametersδ

(mm) is assumed to be:

p(δ) =
{

0.115 exp(0.095δ), 2 mm≤ δ ≤ 66 mm

0, elsewhere
(18)

The discharge coefficient is set such that the release ratec (kg s−1) is given byc = 0.014
δ2.

Although the case to be modelled is that of a continuous release of chlorine, a toxic dose
can be calculated by assuming that this release lasts for a period of lengthτm (minutes), at
the end of which the release ceases because either

• the tank has emptied, or
• the release has been stopped by some sort of intervention.

If it is assumed that the release will be stopped by intervention after 20 min, then the
release durationτm is given by:

τm = min

(
20,

Mg

60c

)
(19)

The use of the periodτm in the calculation of the toxic doseD is described below.

4.1.2. Droplet fraction in released vapour/droplet mixture
This has been assumed to be represented by a uniform distribution between 0 and 1; in

other words, as wide a spread as possible.

4.1.3. Air entrainment rate
The amount of air entrained into the released material at source is difficult to predict. A

multiple by mass of 10 was considered a reasonable mean value, and the standard deviation
(representing the uncertainty in this quantity) was set to 3.0. A log-normal distribution with
these characteristics was used.
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4.1.4. Plume shape at source
GASTAR requires plume width to be specified, and then calculates plume height in

order to give the correct mass flow. Plume aspect ratio was selected as the uncertain input
parameter, which was represented as a normal distribution withµ = 1.0 andσ = 0.2. A
subroutine was included within a pre-processing routine (Appendix A) in order to calculate
the appropriate plume width.

4.2. Atmospheric variables

The frequency distributions of the atmospheric variables which are relevant to a dispersion
calculation, these being

• wind speed,
• wind direction,
• atmospheric stability,
• air/ground temperature difference,
• humidity,

cannot in general be represented as independent of one another, nor can they be represented
by simple analytic functions. Nevertheless, although techniques do exist within the scope of
the MLFP method for treating interdependent variables (see, e.g. [2]), they are represented in
a very simple way in this example case. The concentration is calculated directly downwind
of the release, so the wind direction is not considered, and the atmospheric stability is set
to Pasquill category ‘E’ (i.e. fairly stable).

The wind speed is represented by a Weibull distribution appropriate to a site where the
winds are relatively light, having a mean speed of 2.7 m s−1. The ground temperature was
fixed at 290 K (17◦C) with air temperature represented by a uniform distribution between
295 and 300 K. Humidity was represented by a uniform distribution between 10 and 90%.

4.3. Ground characteristics

The ground roughness lengthz0 is represented by a log-normal distribution with a mean
of 0.1 m and a standard deviation also of 0.1 m. The mean value is characteristic of a standard
industrial site.

4.4. Toxicity

For a constant pollutant concentrationC (ppm) persisting for a timeτm (minutes) the toxic
doseD (ppm2 min) experienced at a location is calculated from the following expression:

D = C2τm (20)

The toxicity can be expressed by means of a population tolerance distribution, which ex-
presses the fraction of deathsfD in a population as a function of the toxic dose received by
an individual. It is found [9] that the distribution is approximately log-normal, i.e. ifV is
defined as

V = ln (D) (21)
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then

fD = Φ(v) (22)

whereΦ is as in Eq. (5) and

v = (V − T )

S
(23)

where T represents the mean tolerance andS the spread of tolerances in the popu-
lation.

The quantitiesT andS, despite being parameters in a distribution (of toxic tolerance), can
be considered as uncertain inputs to the consequence model and therefore, can themselves be
represented by probability distributions in the MLFP calculation. BothT andS are therefore
represented by normal distributions, reflecting (in a very approximate way) the variations
in toxicity data found in the literature. From published chlorine toxicity (probit) data [9],T
is given a mean of 14.45 and a standard deviation of 1.5 andS is given a mean of 1.087 and
a standard deviation of 0.15.

5. Results

5.1. Risk estimate

The first property of the method to be demonstrated is thatPf1, the first-order estimate,
is here a reasonable estimate of the conditional riskRc. Fig. 4 shows the variation of both
these quantities as a function of the distanced to the dose point, withRc being calculated
by the Monte Carlo method. Although the first-order estimate begins to drift away from
the true value at large distances from the source, it remains sufficiently close such that an
estimate of its sensitivity would be expected to be a reasonable measure of the sensitivity
of the actual risk.

The number of consequence model calls for the cases shown in Fig. 4 varied from
case to case, with a minimum of 61 and a maximum of 191. The required number
will vary according to the convergence tolerance, the amount of ‘noise’ in the conse-
quence model prediction and the proximity of the start point to the MLFP. The results
of this and previous unpublished work indicate that, with the software used (Appendix
A), the MLFP is usually located within 10–20N calls, using the BEP as the start
point.

5.2. Values of variables at the MLFP

The MLFP search algorithm adjusts the values of the model input quantities until it finds
the nearest point on the failure surface to the BEP, with the distance (β) expressed as the
combined number of standard deviations. This implies that, other things being equal, the
inputs which have the most effect on the result will tend to be adjusted the most. Figs. 5 and
6 contrast the results of these adjustments for two variables: leak hole diameter and relative
humidity.
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As would be expected, the leak hole diameter has a strong influence on the toxic dose
and this is reflected in the behaviour shown in Fig. 5. At distances of 200 and 500 m
the BEP is in the failure region (i.e. the median values produce a value off D > 0.005)
so the MLFP method must take steps to reducefD in order to find the failure surface.
This is evident in Fig. 5, where the MLFP value ofδ has been reduced below the me-
dian value of 9.27 mm. As the distance increases, the value of the leak hole diameter
is progressively increased. The tendency to level out above 10,000 m is discussed in
Section 5.3.

The large variation of leak hole diameter shown in Fig. 5 may be contrasted with the
minimal variation of humidity shown in Fig. 6. This quantity has almost no effect on the
toxic dose: the algorithm recognises this and produces no adjustment. One would expect,
therefore, that the humidity could be represented by its mean value (i.e. 50%) without
affecting the calculation. That is this is indeed the case demonstrated quantitatively below.

5.3. Importances

The net adjustments produced for all the variables are displayed in standardised form in
Fig. 7, which shows the variation of the importancesIi (Eq. (14)) as a function of distance
from the source. It is evident that these importances differ from variable to variable by
orders of magnitude, so that an approximate method for estimating sensitivities is quite
adequate for the screening procedure used for determining which variables are significant
and which are not (Section 3.3.2).

At short distances, the most important variable is clearly the leak hole diameterδ, with
that of the mean toxic toleranceT being about one half that ofδ. The latter indicates that
the calculated risk is being influenced by the significant possibility (to be quantified below)
that the exposed population are actually more vulnerable than the best-estimate value ofT
would suggest.

The other variables are much less important, though the procedure suggested in Section
3.3.2 implies that the user might wish to assess the sensitivity to roughness length.

As d increases, the features of note in Fig. 7 are the rise in the importances of the
wind speed and the inventory. A feature of the GASTAR plume transport model under the
assumed conditions is a rapid rise in predicted airborne concentration with reductions in
wind speed, giving rise to the increasing importance of this quantity as distance increases.
The behaviour suggests that the low wind speed tail of the adopted distribution is extremely
significant and that the user should confirm that the wind profile at the site in question
is correctly represented and that the consequence model is valid at the low wind speeds
predicted (Section 5.5).

It is noticeable that the importance of the inventory is zero ford up to 2000 m and non-zero
for 5000 m and above. At 2000 m, the MLFP value of hole size produces a leak rate of about
3.6 kg s−1, which is insufficient to empty the tank of its median value contents (10 t) within
20 min (Section 4.1.1). Above 5000 m however, the MLFP leak rate will empty the tank, so
the inventory begins to influence the result (though not dramatically). Further increases in
leak hole diameter empty the tank earlier and hence only weakly affect the toxic dose. This
is the reason why, in Fig. 5, the MLFP value of leak hole diameter does not increase much
for d above about 10,000 m.
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Table 2
Sensitivity of the calculated risk: comparison of the predictions of the sensitivity formulas with the results of
re-runs of the MLFP calculation

Quantity replaced by
median value

Distance (m)= 200;
(Pf1 = 9.06149× 10−1)

Distance (m)= 20,000;
(Pf1 = 7.6836× 10−3)

Change inPf1

from base case
"Pf1 as predicted
by Eq. (17)

Change inPf1

from base case
"Pf1 as predicted
by Eq. (17)

Tank inventory 0.0 0.0 <|2× 10−4| −1.66× 10−4

Droplet fraction 5.22× 10−4 5.34× 10−4 <|2× 10−4| −1.41× 10−8

Air entrainment multiple <|2× 10−4| 3.31× 10−6 <|2× 10−4| −2.92× 10−7

Aspect ratio of source <|2× 10−4| 2.74× 10−7 <|2× 10−4| 0.0
Air temperature <|2× 10−4| 2.40× 10−6 <|2× 10−4| −2.04× 10−5

Humidity <|2× 10−4| 9.15× 10−7 <|2× 10−4| −1.26× 10−6

Roughness length 2.65× 10−3 3.54× 10−3 −6.4× 10−4 −1.09× 10−3

Toxicity tolerance mean 5.32× 10−2 3.06× 10−2 −2.2× 10−3 −3.43× 10−3

Toxicity tolerance
standard deviation

1.63× 10−3 1.13× 10−3 <|2× 10−4| −5.54× 10−4

5.4. Sensitivity formulas

The use of the sensitivity formulas (Section 3.3.2) is illustrated in the results of Table 2.
The two extreme distances; 200 and 20,000 m, have been selected to assess the predictions
of the sensitivity formulas for those variables whose values are considered ‘uncertain’ and
which are therefore represented by symmetric distributions (in the case of roughness length
z0, it is the distribution of ln (z0) which is symmetric). The predictions of the formula were
tested by re-running the MLFP calculation with the standard deviation set to a very low
value. The MLFP search convergence tolerance (which is constrained by the noise in the
value returned by the consequence model) is here equivalent to an uncertainty inPf1 of
about 2× 10−4, so changes inPf1 below this value will not be accurate and have not been
included explicitly.

It is evident from the table that in all cases except one, Eq. (17) provides a good pre-
diction of the sensitivity ofRc to the process of replacing the distribution by its median
value. In the aberrant case (toxicity tolerance standard deviation at 20,000 m), it is likely
that the convergence tolerance is producing two similar values ofPf1, giving rise to a
much smaller value of"Pf1 than the formula predicts. Nevertheless, in all cases, Eq. (17)
provides a reliable guide as to whether the uncertainty in the input quantity is signi-
ficant or not.

The conclusion to be drawn from the values of"Pf1 is clearly as follows. At 200 m, none
of the uncertainties has any significant effect on the calculated risk: a risk calculation which
assumes median values for these quantities will be satisfactory. At 20,000 m however, a
risk calculation which assumes a best-estimate value ofT may significantly underestimate
the risk by neglecting the possibility that the population is actually more vulnerable than
assumed. In the light of this information, the user would perhaps seek to obtain more specific
information about the population downwind of the site under consideration. Furthermore,
the user might wish to reassess the values used for roughness length, since this is seen to
have some effect on the result.
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5.5. Consequence model validity

Many consequence models are valid only over certain ranges of their inputs. When these
models are used within conventional risk analysis methods (Section 3) the input values may
stray outside these ranges. What criterion should be used to decide if the model is valid for
the analysis as a whole? The MLFP method provides a clear answer: the model is valid for the
analysis if it is valid at the most likely failure point. Nevertheless, if the MLFP turns out to be
outside the valid range, this does not necessarily imply that the results cannot be used, so long
as it can be demonstrated that the error is small or that the results are pessimistic. However,
this will require the use of ad hoc arguments which are outside the scope of this paper.

6. Conclusions

The most likely failure point (MLFP) method, developed within the field of structural
reliability analysis (where it is known as the FORM/SORM method) is a technique for
estimating the risk (probability) that a calculated quantityQ exceeds a set limitQlim when
some or all of the inputs to the calculation are uncertain.

The method works by first locating the most probable set of input values which produce
the valueQlim (i.e. the most likely failure point). Once the MLFP is found, its co-ordinates
provide a simple means for estimating the value of the risk. In addition, the use of the very
simple sensitivity formulas that the method provides, together with a screening procedure
of the type proposed, readily identify the uncertainties to which the risk estimate is most
sensitive.

Although the MLFP method can be used as an efficient stand-alone technique for the
estimation of risk, for application within the field of toxic hazards it is proposed as a means
for performing sensitivity analyses, possibly in parallel with a risk calculation carried out
by conventional methods.

The use of the method and of the screening procedure has been demonstrated by means
of example calculations of the risk arising from an installation containing chlorine. The
calculation employs a commercially available stand-alone dense gas dispersion model. The
results demonstrate that:

• the MLFP can be located in typically 10–20N executions of the consequence model,
whereN is the number of uncertain input variables;

• once the MLFP is found, an estimate of risk can be obtained by a simple formula and
is sufficiently close to an ‘exact’ Monte Carlo estimate to be used as the basis of the
sensitivity analysis;

• the proposed screening procedure and the sensitivity formula are easy, even trivial, to
apply and provide a reliable guide to the sensitivity of the risk to the uncertainties in the
input quantities;

The identification of a single set of input values containing sufficient information to sum-
marise (at least approximately) the entire risk analysis is considered to be an important fea-
ture of the method. On this basis, it is proposed that if the MLFP is within the range of validity
of the consequence model, the model can be considered to be valid for the whole analysis.
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The most likely failure point method is therefore a generalised, efficient mathematical
technique for certain types of risk calculation. Not only does it provide an estimate of risk,
but it comes with a built-in sensitivity study. It deserves to be more widely known.
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Appendix A. Practicalities of performing an MLFP calculation

The execution of an MLFP calculation requires the use of specialised software. This
software needs to include:

• a menu of available probability distributions,
• means for performing the transformation from standard normal to physical variables,
• a procedure for passing the physical variables to the consequence model and for obtaining

in return the calculated value of the quantity of interestQ,
• a method for finding the most likely failure point using the above information,
• methods for calculating risk and sensitivity estimates.

This type of software is available commercially (e.g. [10] ). However, the calculations
described in the main part of the paper were performed using purpose-written experimental
MLFP software written in Fortran and known as FARSIDE. The following discusses the
specific implementation of the consequence function calls in FARSIDE, but the principles
can be applied in general.

FARSIDE contains a statementQ = CON(N, X) where CON(N, X) is a Fortran function
which defines the call to the consequence model. In the argument list,N is the number of
uncertain physical variables andX is the array of values of these quantities which are being
passed to the model.

The consequence model is assumed to be made up of the following components:

• a pre-processor,
• a stand-alone physical model,
• a post-processor.

The pre- and post-processors are assumed to be ‘shell’ routines which are user-written.
The physical model is assumed to represent the main science/engineering content of the
consequence model. It is, of course, preferable that the physical model should be available
as source code so that it can be compiled and linked as part of the consequence model.
However, it is possible that such a model will be available only in executable form. In this
general case, the purpose of the shell routines is to:

• convert the values of the physical variables into suitable input quantities for the physical
model,
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• write a model input data file to disk,
• execute the physical model,
• read the relevant results from the model output disk file(s),
• interpret the results and calculate the value of the quantityQ.

It is likely to be the case that the majority of the time spent in performing the MLFP
calculation is spent in running the physical model during the MLFP search. The efficiency
with which the software performs the constrained minimisation in order to locate the MLFP
will therefore determine the overall execution time. With FARSIDE, which uses an adapted
form of the projected gradient method [11], the MLFP is usually located in 10–20N execu-
tions of the model, though this can be improved if a good initial guess of the location of the
MLFP is available.

One feature which consequence models must possess is that the result (i.e.Q) must be a
continuous function of the inputsxi ; i = 1 . . . N . Discontinuities can arise from a number
of causes:

• errors in the model,
• the use of different models for different data ranges without ‘blending’,
• poorly-converged solutions,
• low accuracy of output values.

These features can adversely affect the convergence of the MLFP search. Conversely, poor
convergence behaviour can sometimes indicate the presence of a previously unsuspected
error in the model.
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